stl_set.h

Go to the documentation of this file.
00001 // Set implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
00004 // Free Software Foundation, Inc.
00005 //
00006 // This file is part of the GNU ISO C++ Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 2, or (at your option)
00010 // any later version.
00011 
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 
00017 // You should have received a copy of the GNU General Public License along
00018 // with this library; see the file COPYING.  If not, write to the Free
00019 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
00020 // USA.
00021 
00022 // As a special exception, you may use this file as part of a free software
00023 // library without restriction.  Specifically, if other files instantiate
00024 // templates or use macros or inline functions from this file, or you compile
00025 // this file and link it with other files to produce an executable, this
00026 // file does not by itself cause the resulting executable to be covered by
00027 // the GNU General Public License.  This exception does not however
00028 // invalidate any other reasons why the executable file might be covered by
00029 // the GNU General Public License.
00030 
00031 /*
00032  *
00033  * Copyright (c) 1994
00034  * Hewlett-Packard Company
00035  *
00036  * Permission to use, copy, modify, distribute and sell this software
00037  * and its documentation for any purpose is hereby granted without fee,
00038  * provided that the above copyright notice appear in all copies and
00039  * that both that copyright notice and this permission notice appear
00040  * in supporting documentation.  Hewlett-Packard Company makes no
00041  * representations about the suitability of this software for any
00042  * purpose.  It is provided "as is" without express or implied warranty.
00043  *
00044  *
00045  * Copyright (c) 1996,1997
00046  * Silicon Graphics Computer Systems, Inc.
00047  *
00048  * Permission to use, copy, modify, distribute and sell this software
00049  * and its documentation for any purpose is hereby granted without fee,
00050  * provided that the above copyright notice appear in all copies and
00051  * that both that copyright notice and this permission notice appear
00052  * in supporting documentation.  Silicon Graphics makes no
00053  * representations about the suitability of this software for any
00054  * purpose.  It is provided "as is" without express or implied warranty.
00055  */
00056 
00057 /** @file stl_set.h
00058  *  This is an internal header file, included by other library headers.
00059  *  You should not attempt to use it directly.
00060  */
00061 
00062 #ifndef _STL_SET_H
00063 #define _STL_SET_H 1
00064 
00065 #include <bits/concept_check.h>
00066 
00067 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
00068 
00069   /**
00070    *  @brief A standard container made up of unique keys, which can be
00071    *  retrieved in logarithmic time.
00072    *
00073    *  @ingroup Containers
00074    *  @ingroup Assoc_containers
00075    *
00076    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00077    *  <a href="tables.html#66">reversible container</a>, and an
00078    *  <a href="tables.html#69">associative container</a> (using unique keys).
00079    *
00080    *  Sets support bidirectional iterators.
00081    *
00082    *  @param  Key  Type of key objects.
00083    *  @param  Compare  Comparison function object type, defaults to less<Key>.
00084    *  @param  Alloc  Allocator type, defaults to allocator<Key>.
00085    *
00086    *  The private tree data is declared exactly the same way for set and
00087    *  multiset; the distinction is made entirely in how the tree functions are
00088    *  called (*_unique versus *_equal, same as the standard).
00089   */
00090   template<typename _Key, typename _Compare = std::less<_Key>,
00091        typename _Alloc = std::allocator<_Key> >
00092     class set
00093     {
00094       // concept requirements
00095       typedef typename _Alloc::value_type                   _Alloc_value_type;
00096       __glibcxx_class_requires(_Key, _SGIAssignableConcept)
00097       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
00098                 _BinaryFunctionConcept)
00099       __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)  
00100 
00101     public:
00102       // typedefs:
00103       //@{
00104       /// Public typedefs.
00105       typedef _Key     key_type;
00106       typedef _Key     value_type;
00107       typedef _Compare key_compare;
00108       typedef _Compare value_compare;
00109       typedef _Alloc   allocator_type;
00110       //@}
00111 
00112     private:
00113       typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type;
00114 
00115       typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
00116                key_compare, _Key_alloc_type> _Rep_type;
00117       _Rep_type _M_t;  // Red-black tree representing set.
00118 
00119     public:
00120       //@{
00121       ///  Iterator-related typedefs.
00122       typedef typename _Key_alloc_type::pointer             pointer;
00123       typedef typename _Key_alloc_type::const_pointer       const_pointer;
00124       typedef typename _Key_alloc_type::reference           reference;
00125       typedef typename _Key_alloc_type::const_reference     const_reference;
00126       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00127       // DR 103. set::iterator is required to be modifiable,
00128       // but this allows modification of keys.
00129       typedef typename _Rep_type::const_iterator            iterator;
00130       typedef typename _Rep_type::const_iterator            const_iterator;
00131       typedef typename _Rep_type::const_reverse_iterator    reverse_iterator;
00132       typedef typename _Rep_type::const_reverse_iterator    const_reverse_iterator;
00133       typedef typename _Rep_type::size_type                 size_type;
00134       typedef typename _Rep_type::difference_type           difference_type;
00135       //@}
00136 
00137       // allocation/deallocation
00138       /**
00139        *  @brief  Default constructor creates no elements.
00140        */
00141       set()
00142       : _M_t() { }
00143 
00144       /**
00145        *  @brief  Creates a %set with no elements.
00146        *  @param  comp  Comparator to use.
00147        *  @param  a  An allocator object.
00148        */
00149       explicit
00150       set(const _Compare& __comp,
00151       const allocator_type& __a = allocator_type())
00152       : _M_t(__comp, __a) { }
00153 
00154       /**
00155        *  @brief  Builds a %set from a range.
00156        *  @param  first  An input iterator.
00157        *  @param  last  An input iterator.
00158        *
00159        *  Create a %set consisting of copies of the elements from [first,last).
00160        *  This is linear in N if the range is already sorted, and NlogN
00161        *  otherwise (where N is distance(first,last)).
00162        */
00163       template<typename _InputIterator>
00164         set(_InputIterator __first, _InputIterator __last)
00165     : _M_t()
00166         { _M_t._M_insert_unique(__first, __last); }
00167 
00168       /**
00169        *  @brief  Builds a %set from a range.
00170        *  @param  first  An input iterator.
00171        *  @param  last  An input iterator.
00172        *  @param  comp  A comparison functor.
00173        *  @param  a  An allocator object.
00174        *
00175        *  Create a %set consisting of copies of the elements from [first,last).
00176        *  This is linear in N if the range is already sorted, and NlogN
00177        *  otherwise (where N is distance(first,last)).
00178        */
00179       template<typename _InputIterator>
00180         set(_InputIterator __first, _InputIterator __last,
00181         const _Compare& __comp,
00182         const allocator_type& __a = allocator_type())
00183     : _M_t(__comp, __a)
00184         { _M_t._M_insert_unique(__first, __last); }
00185 
00186       /**
00187        *  @brief  %Set copy constructor.
00188        *  @param  x  A %set of identical element and allocator types.
00189        *
00190        *  The newly-created %set uses a copy of the allocation object used
00191        *  by @a x.
00192        */
00193       set(const set& __x)
00194       : _M_t(__x._M_t) { }
00195 
00196 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00197      /**
00198        *  @brief %Set move constructor
00199        *  @param x  A %set of identical element and allocator types.
00200        *
00201        *  The newly-created %set contains the exact contents of @a x.
00202        *  The contents of @a x are a valid, but unspecified %set.
00203        */
00204       set(set&& __x)
00205       : _M_t(std::forward<_Rep_type>(__x._M_t)) { }
00206 #endif
00207 
00208       /**
00209        *  @brief  %Set assignment operator.
00210        *  @param  x  A %set of identical element and allocator types.
00211        *
00212        *  All the elements of @a x are copied, but unlike the copy constructor,
00213        *  the allocator object is not copied.
00214        */
00215       set&
00216       operator=(const set& __x)
00217       {
00218     _M_t = __x._M_t;
00219     return *this;
00220       }
00221 
00222 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00223       /**
00224        *  @brief %Set move assignment operator.
00225        *  @param x  A %set of identical element and allocator types.
00226        *
00227        *  The contents of @a x are moved into this %set (without copying).
00228        *  @a x is a valid, but unspecified %set.
00229        */
00230       set&
00231       operator=(set&& __x)
00232       {
00233     // NB: DR 675.
00234     this->clear();
00235     this->swap(__x); 
00236     return *this;
00237       }
00238 #endif
00239 
00240       // accessors:
00241 
00242       ///  Returns the comparison object with which the %set was constructed.
00243       key_compare
00244       key_comp() const
00245       { return _M_t.key_comp(); }
00246       ///  Returns the comparison object with which the %set was constructed.
00247       value_compare
00248       value_comp() const
00249       { return _M_t.key_comp(); }
00250       ///  Returns the allocator object with which the %set was constructed.
00251       allocator_type
00252       get_allocator() const
00253       { return _M_t.get_allocator(); }
00254 
00255       /**
00256        *  Returns a read-only (constant) iterator that points to the first
00257        *  element in the %set.  Iteration is done in ascending order according
00258        *  to the keys.
00259        */
00260       iterator
00261       begin() const
00262       { return _M_t.begin(); }
00263 
00264       /**
00265        *  Returns a read-only (constant) iterator that points one past the last
00266        *  element in the %set.  Iteration is done in ascending order according
00267        *  to the keys.
00268        */
00269       iterator
00270       end() const
00271       { return _M_t.end(); }
00272 
00273       /**
00274        *  Returns a read-only (constant) iterator that points to the last
00275        *  element in the %set.  Iteration is done in descending order according
00276        *  to the keys.
00277        */
00278       reverse_iterator
00279       rbegin() const
00280       { return _M_t.rbegin(); }
00281 
00282       /**
00283        *  Returns a read-only (constant) reverse iterator that points to the
00284        *  last pair in the %set.  Iteration is done in descending order
00285        *  according to the keys.
00286        */
00287       reverse_iterator
00288       rend() const
00289       { return _M_t.rend(); }
00290 
00291 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00292       /**
00293        *  Returns a read-only (constant) iterator that points to the first
00294        *  element in the %set.  Iteration is done in ascending order according
00295        *  to the keys.
00296        */
00297       iterator
00298       cbegin() const
00299       { return _M_t.begin(); }
00300 
00301       /**
00302        *  Returns a read-only (constant) iterator that points one past the last
00303        *  element in the %set.  Iteration is done in ascending order according
00304        *  to the keys.
00305        */
00306       iterator
00307       cend() const
00308       { return _M_t.end(); }
00309 
00310       /**
00311        *  Returns a read-only (constant) iterator that points to the last
00312        *  element in the %set.  Iteration is done in descending order according
00313        *  to the keys.
00314        */
00315       reverse_iterator
00316       crbegin() const
00317       { return _M_t.rbegin(); }
00318 
00319       /**
00320        *  Returns a read-only (constant) reverse iterator that points to the
00321        *  last pair in the %set.  Iteration is done in descending order
00322        *  according to the keys.
00323        */
00324       reverse_iterator
00325       crend() const
00326       { return _M_t.rend(); }
00327 #endif
00328 
00329       ///  Returns true if the %set is empty.
00330       bool
00331       empty() const
00332       { return _M_t.empty(); }
00333 
00334       ///  Returns the size of the %set.
00335       size_type
00336       size() const
00337       { return _M_t.size(); }
00338 
00339       ///  Returns the maximum size of the %set.
00340       size_type
00341       max_size() const
00342       { return _M_t.max_size(); }
00343 
00344       /**
00345        *  @brief  Swaps data with another %set.
00346        *  @param  x  A %set of the same element and allocator types.
00347        *
00348        *  This exchanges the elements between two sets in constant time.
00349        *  (It is only swapping a pointer, an integer, and an instance of
00350        *  the @c Compare type (which itself is often stateless and empty), so it
00351        *  should be quite fast.)
00352        *  Note that the global std::swap() function is specialized such that
00353        *  std::swap(s1,s2) will feed to this function.
00354        */
00355       void
00356 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00357       swap(set&& __x)
00358 #else
00359       swap(set& __x)    
00360 #endif
00361       { _M_t.swap(__x._M_t); }
00362 
00363       // insert/erase
00364       /**
00365        *  @brief Attempts to insert an element into the %set.
00366        *  @param  x  Element to be inserted.
00367        *  @return  A pair, of which the first element is an iterator that points
00368        *           to the possibly inserted element, and the second is a bool
00369        *           that is true if the element was actually inserted.
00370        *
00371        *  This function attempts to insert an element into the %set.  A %set
00372        *  relies on unique keys and thus an element is only inserted if it is
00373        *  not already present in the %set.
00374        *
00375        *  Insertion requires logarithmic time.
00376        */
00377       std::pair<iterator, bool>
00378       insert(const value_type& __x)
00379       {
00380     std::pair<typename _Rep_type::iterator, bool> __p =
00381       _M_t._M_insert_unique(__x);
00382     return std::pair<iterator, bool>(__p.first, __p.second);
00383       }
00384 
00385       /**
00386        *  @brief Attempts to insert an element into the %set.
00387        *  @param  position  An iterator that serves as a hint as to where the
00388        *                    element should be inserted.
00389        *  @param  x  Element to be inserted.
00390        *  @return  An iterator that points to the element with key of @a x (may
00391        *           or may not be the element passed in).
00392        *
00393        *  This function is not concerned about whether the insertion took place,
00394        *  and thus does not return a boolean like the single-argument insert()
00395        *  does.  Note that the first parameter is only a hint and can
00396        *  potentially improve the performance of the insertion process.  A bad
00397        *  hint would cause no gains in efficiency.
00398        *
00399        *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
00400        *  for more on "hinting".
00401        *
00402        *  Insertion requires logarithmic time (if the hint is not taken).
00403        */
00404       iterator
00405       insert(iterator __position, const value_type& __x)
00406       { return _M_t._M_insert_unique_(__position, __x); }
00407 
00408       /**
00409        *  @brief A template function that attempts to insert a range of elements.
00410        *  @param  first  Iterator pointing to the start of the range to be
00411        *                 inserted.
00412        *  @param  last  Iterator pointing to the end of the range.
00413        *
00414        *  Complexity similar to that of the range constructor.
00415        */
00416       template<typename _InputIterator>
00417         void
00418         insert(_InputIterator __first, _InputIterator __last)
00419         { _M_t._M_insert_unique(__first, __last); }
00420 
00421       /**
00422        *  @brief Erases an element from a %set.
00423        *  @param  position  An iterator pointing to the element to be erased.
00424        *
00425        *  This function erases an element, pointed to by the given iterator,
00426        *  from a %set.  Note that this function only erases the element, and
00427        *  that if the element is itself a pointer, the pointed-to memory is not
00428        *  touched in any way.  Managing the pointer is the user's responsibility.
00429        */
00430       void
00431       erase(iterator __position)
00432       { _M_t.erase(__position); }
00433 
00434       /**
00435        *  @brief Erases elements according to the provided key.
00436        *  @param  x  Key of element to be erased.
00437        *  @return  The number of elements erased.
00438        *
00439        *  This function erases all the elements located by the given key from
00440        *  a %set.
00441        *  Note that this function only erases the element, and that if
00442        *  the element is itself a pointer, the pointed-to memory is not touched
00443        *  in any way.  Managing the pointer is the user's responsibility.
00444        */
00445       size_type
00446       erase(const key_type& __x)
00447       { return _M_t.erase(__x); }
00448 
00449       /**
00450        *  @brief Erases a [first,last) range of elements from a %set.
00451        *  @param  first  Iterator pointing to the start of the range to be
00452        *                 erased.
00453        *  @param  last  Iterator pointing to the end of the range to be erased.
00454        *
00455        *  This function erases a sequence of elements from a %set.
00456        *  Note that this function only erases the element, and that if
00457        *  the element is itself a pointer, the pointed-to memory is not touched
00458        *  in any way.  Managing the pointer is the user's responsibility.
00459        */
00460       void
00461       erase(iterator __first, iterator __last)
00462       { _M_t.erase(__first, __last); }
00463 
00464       /**
00465        *  Erases all elements in a %set.  Note that this function only erases
00466        *  the elements, and that if the elements themselves are pointers, the
00467        *  pointed-to memory is not touched in any way.  Managing the pointer is
00468        *  the user's responsibility.
00469        */
00470       void
00471       clear()
00472       { _M_t.clear(); }
00473 
00474       // set operations:
00475 
00476       /**
00477        *  @brief  Finds the number of elements.
00478        *  @param  x  Element to located.
00479        *  @return  Number of elements with specified key.
00480        *
00481        *  This function only makes sense for multisets; for set the result will
00482        *  either be 0 (not present) or 1 (present).
00483        */
00484       size_type
00485       count(const key_type& __x) const
00486       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
00487 
00488       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00489       // 214.  set::find() missing const overload
00490       //@{
00491       /**
00492        *  @brief Tries to locate an element in a %set.
00493        *  @param  x  Element to be located.
00494        *  @return  Iterator pointing to sought-after element, or end() if not
00495        *           found.
00496        *
00497        *  This function takes a key and tries to locate the element with which
00498        *  the key matches.  If successful the function returns an iterator
00499        *  pointing to the sought after element.  If unsuccessful it returns the
00500        *  past-the-end ( @c end() ) iterator.
00501        */
00502       iterator
00503       find(const key_type& __x)
00504       { return _M_t.find(__x); }
00505 
00506       const_iterator
00507       find(const key_type& __x) const
00508       { return _M_t.find(__x); }
00509       //@}
00510 
00511       //@{
00512       /**
00513        *  @brief Finds the beginning of a subsequence matching given key.
00514        *  @param  x  Key to be located.
00515        *  @return  Iterator pointing to first element equal to or greater
00516        *           than key, or end().
00517        *
00518        *  This function returns the first element of a subsequence of elements
00519        *  that matches the given key.  If unsuccessful it returns an iterator
00520        *  pointing to the first element that has a greater value than given key
00521        *  or end() if no such element exists.
00522        */
00523       iterator
00524       lower_bound(const key_type& __x)
00525       { return _M_t.lower_bound(__x); }
00526 
00527       const_iterator
00528       lower_bound(const key_type& __x) const
00529       { return _M_t.lower_bound(__x); }
00530       //@}
00531 
00532       //@{
00533       /**
00534        *  @brief Finds the end of a subsequence matching given key.
00535        *  @param  x  Key to be located.
00536        *  @return Iterator pointing to the first element
00537        *          greater than key, or end().
00538        */
00539       iterator
00540       upper_bound(const key_type& __x)
00541       { return _M_t.upper_bound(__x); }
00542 
00543       const_iterator
00544       upper_bound(const key_type& __x) const
00545       { return _M_t.upper_bound(__x); }
00546       //@}
00547 
00548       //@{
00549       /**
00550        *  @brief Finds a subsequence matching given key.
00551        *  @param  x  Key to be located.
00552        *  @return  Pair of iterators that possibly points to the subsequence
00553        *           matching given key.
00554        *
00555        *  This function is equivalent to
00556        *  @code
00557        *    std::make_pair(c.lower_bound(val),
00558        *                   c.upper_bound(val))
00559        *  @endcode
00560        *  (but is faster than making the calls separately).
00561        *
00562        *  This function probably only makes sense for multisets.
00563        */
00564       std::pair<iterator, iterator>
00565       equal_range(const key_type& __x)
00566       { return _M_t.equal_range(__x); }
00567 
00568       std::pair<const_iterator, const_iterator>
00569       equal_range(const key_type& __x) const
00570       { return _M_t.equal_range(__x); }
00571       //@}
00572 
00573       template<typename _K1, typename _C1, typename _A1>
00574         friend bool
00575         operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
00576 
00577       template<typename _K1, typename _C1, typename _A1>
00578         friend bool
00579         operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
00580     };
00581 
00582 
00583   /**
00584    *  @brief  Set equality comparison.
00585    *  @param  x  A %set.
00586    *  @param  y  A %set of the same type as @a x.
00587    *  @return  True iff the size and elements of the sets are equal.
00588    *
00589    *  This is an equivalence relation.  It is linear in the size of the sets.
00590    *  Sets are considered equivalent if their sizes are equal, and if
00591    *  corresponding elements compare equal.
00592   */
00593   template<typename _Key, typename _Compare, typename _Alloc>
00594     inline bool
00595     operator==(const set<_Key, _Compare, _Alloc>& __x,
00596            const set<_Key, _Compare, _Alloc>& __y)
00597     { return __x._M_t == __y._M_t; }
00598 
00599   /**
00600    *  @brief  Set ordering relation.
00601    *  @param  x  A %set.
00602    *  @param  y  A %set of the same type as @a x.
00603    *  @return  True iff @a x is lexicographically less than @a y.
00604    *
00605    *  This is a total ordering relation.  It is linear in the size of the
00606    *  maps.  The elements must be comparable with @c <.
00607    *
00608    *  See std::lexicographical_compare() for how the determination is made.
00609   */
00610   template<typename _Key, typename _Compare, typename _Alloc>
00611     inline bool
00612     operator<(const set<_Key, _Compare, _Alloc>& __x,
00613           const set<_Key, _Compare, _Alloc>& __y)
00614     { return __x._M_t < __y._M_t; }
00615 
00616   ///  Returns !(x == y).
00617   template<typename _Key, typename _Compare, typename _Alloc>
00618     inline bool
00619     operator!=(const set<_Key, _Compare, _Alloc>& __x,
00620            const set<_Key, _Compare, _Alloc>& __y)
00621     { return !(__x == __y); }
00622 
00623   ///  Returns y < x.
00624   template<typename _Key, typename _Compare, typename _Alloc>
00625     inline bool
00626     operator>(const set<_Key, _Compare, _Alloc>& __x,
00627           const set<_Key, _Compare, _Alloc>& __y)
00628     { return __y < __x; }
00629 
00630   ///  Returns !(y < x)
00631   template<typename _Key, typename _Compare, typename _Alloc>
00632     inline bool
00633     operator<=(const set<_Key, _Compare, _Alloc>& __x,
00634            const set<_Key, _Compare, _Alloc>& __y)
00635     { return !(__y < __x); }
00636 
00637   ///  Returns !(x < y)
00638   template<typename _Key, typename _Compare, typename _Alloc>
00639     inline bool
00640     operator>=(const set<_Key, _Compare, _Alloc>& __x,
00641            const set<_Key, _Compare, _Alloc>& __y)
00642     { return !(__x < __y); }
00643 
00644   /// See std::set::swap().
00645   template<typename _Key, typename _Compare, typename _Alloc>
00646     inline void
00647     swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y)
00648     { __x.swap(__y); }
00649 
00650 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00651   template<typename _Key, typename _Compare, typename _Alloc>
00652     inline void
00653     swap(set<_Key, _Compare, _Alloc>&& __x, set<_Key, _Compare, _Alloc>& __y)
00654     { __x.swap(__y); }
00655 
00656   template<typename _Key, typename _Compare, typename _Alloc>
00657     inline void
00658     swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>&& __y)
00659     { __x.swap(__y); }
00660 #endif
00661 
00662 _GLIBCXX_END_NESTED_NAMESPACE
00663 
00664 #endif /* _STL_SET_H */

Generated on Wed Mar 26 00:43:15 2008 for libstdc++ by  doxygen 1.5.1